Министерство науки и высшего образования РФ

ФГБОУ ВО Уральский государственный лесотехнический университет

Инженерно-технический институт

Кафедра технологических машин и технологии машиностроения

Рабочая программа дисциплины

включая фонд оценочных средств и методические указания для самостоятельной работы обучающихся

Б1.О.32 - ТЕОРИЯ И ЭКСПЛУАТАЦИОННАЯ НАДЕЖНОСТЬ ТЕХНОЛОГИЧЕСКИХ МАШИН ОТРАСЛИ

Направление подготовки 35.03.02 Технология лесозаготовительных и деревоперерабатывающих производств Направленность (профиль) — Технологический инжиниринг в целлюлознобумажном производстве Квалификация - бакалавр Количество зачётных единиц (часов) - 6 (216)

г. Екатеринбург, 2021

Разработчик: к.т.н., доцент _____/С. Н. Вихарев/

Рабочая программа утверждена на заседании кафедры технологических машин и технологии машиностроения

(протокол № <u>Т</u> от « <u>do</u> » <u>ешваре</u> 2021 года). Зав. кафедрой <u></u> /Н. В. Куцубина/

Рабочая программа рекомендована к использованию в учебном процессе методической комиссией Инженерно-технического института

(протокол № <u>6</u> от «<u>0</u>4 » <u>0</u>2 2021 года).

Председатель методической комиссии ИТИ ... А. Чижов/

Рабочая программа утверждена директором Инженерно-технического института

Директор ИТИ ________/Е. Е. Шишкина/

«04» 03 20 df года

Оглавление

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных	c
планируемыми результатами освоения образовательной программы	4
2. Место дисциплины в структуре образовательной программы	.5
3. Объем дисциплины в зачетных единицах с указанием количества академических	
часов, выделенных на контактную работу обучающихся с преподавателем	
(по видам учебных занятий) и на самостоятельную работу обучающихся	5
4. Содержание дисциплины, структурированное по темам (разделам) с	
указанием отведенного на них количества академических часов6)
5.1. Трудоемкость разделов дисциплины	6
очная форма обучения	
4.2. Содержание занятий лекционного типа	
5.3 Темы и формы практических (лабораторных) занятий	
6. Перечень учебно-методического обеспечения по дисциплине	
7. Фонд оценочных средств для проведения промежуточной аттестации обучающихся	
по дисциплине9	
7.1. Перечень компетенций с указанием этапов их формирования	
в процессе освоения образовательной программы9	
7.2. Описание показателей и критериев оценивания компетенций на различных	_
этапах их формирования, описание шкал оценивания9)
7.3. Типовые контрольные задания или иные материалы, необходимые для оценки	
знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы	
формирования компетенций в процессе освоения образовательной програм-	2
Mbl	
7.4 Соответствие балльной шкалы оценок и уровней сформированных компетенций	
8. Методические указания для самостоятельной работы обучающихся	
9. Перечень информационных технологий, используемых при осуществления	ии
образовательного процесса по дисциплине	
10. Описание материально-технической базы, необходимой для осуществлен	RN.
образовательного процесса по дисциплине	

1. Общие положения

Дисциплина «Теория и эксплуатационная надежность технологических машин отрасли» относится к блоку Б1.О учебного плана, входящего в состав образовательной программы высшего образования 35.03.02 «Технология лесозаготовительных и деревоперерабатывающих производств» (направленность «Технологический инжиниринг в целлюлозно-бумажном производстве»).

Нормативно-методической базой для разработки рабочей программы учебной дисциплины «Теория и эксплуатационная надежность технологических машин отрасли», являются:

- Федеральный закон «Об образовании в Российской Федерации», утвержденный приказом Минобрнауки РФ № 273-ФЗ от 29.12.2012;
- Приказ Минобрнауки России № 301 от 05.04.2017 г. Об утверждении порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры.
- Федеральный государственный образовательный стандарт высшего образования (ФГОС ВО) бакалавриат по направлению подготовки 35.03.02 Технология лесозаготовительных и деревоперерабатывающих производств, утвержденный приказом Министерства образования и науки Российской Федерации № 698 от 26.07.2017.
- Учебный план образовательной программы высшего образования направления 35.03.02 «Технология лесозаготовительных и деревоперерабатывающих производств» (направленность «Технологический инжиниринг в целлюлозно-бумажном производстве») подготовки бакалавров по очной форме обучения, одобренный Ученым советом УГЛТУ (протокол №6 от 20.06.2019).

Обучение по образовательной программе 35.03.02 «Технология лесозаготовительных и деревоперерабатывающих производств» (направленность «Технологический инжиниринг в целлюлозно-бумажном производстве») осуществляется на русском языке.

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Планируемыми результатами обучения по дисциплине, являются знания, умения, владения и/или опыт деятельности, характеризующие этапы/уровни формирования компетенций и обеспечивающие достижение планируемых результатов освоения образовательной программы в целом.

Цель дисциплины — формирование у обучающихся системы знаний, выработка научного понимания проблем, связанных с обеспечением надежности машин и оборудования лесного комплекса на всех этапах их жизненного цикла, а также приобретения знаний и навыков по применению основных положений теории надежности, научно обоснованных рекомендаций по ее поддержанию в практической деятельности.

Задачами дисциплины являются:

- ознакомление обучающихся с показателями надежности машин и оборудования целлюлозно-бумажного производства, с причины возникновения и физической сущности отказов;
- освоение технологических и эксплуатационных мероприятий, направленных на обеспечение и поддержание работоспособного состояния машин и оборудования;
- освоение методов проведения испытаний на надежность и обработки полученной информации,
- освоение методов расчета и обеспечения надежности машин на этапах проектирования, изготовления и эксплуатации.

Процесс изучения дисциплины направлен на формирование следующих общепрофессиональных компетенций:

ОПК-4 - способен реализовывать современные технологии и обосновывать их применение в профессиональной деятельности;

ОПК-5 – способен участвовать в проведении экспериментальных исследований в профессиональной деятельности.

В результате изучения дисциплины обучающийся должен: знать:

показатели надежности машин и оборудования целлюлозно-бумажного производства; причины возникновения и физическую сущность отказов; технологические и эксплуатационные мероприятия, направленные на обеспечение и поддержание работоспособного состояния машин и оборудования; методы проведения испытаний на надежность и обработки полученной информации, методы расчета и обеспечения надежности машин на этапах проектирования, изготовления и эксплуатации;

уметь:

реализовывать современные технологии в области обеспечения надежности , безотказности и долговечности технологического оборудования и обосновывать их применение в профессиональной деятельности;

правильно планировать испытания на надежность и обрабатывать информацию; разрабатывать и внедрять мероприятия, направленные на обеспечение надежности при проектировании и изготовлении машин и оборудования лесного комплекса и ее поддержание в процессе эксплуатации;

владеть навыками проведения экспериментальных исследований при прогнозировании надежности машин и оборудования.

3. Место дисциплины в структуре образовательной программы

Данная учебная дисциплина относится к обязательным дисциплинам базовой части, что означает формирование в процессе обучения у бакалавра общепрофессиональных знаний и компетенций в рамках направления.

Освоение данной дисциплины является необходимой основой для последующего изучения дисциплин ОПОП.

Перечень обеспечивающих, сопутствующих и обеспечиваемых дисциплин

Обеспечивающие	Сопутствующие	Обеспечиваемые
Древесиноведение и лес-	Лесная таксация	Автоматизация производствен-
ное товароведение	Технология лесопильных и	ных процессов
Физика древесины	деревообрабатывающих	Производственная практика
Современные технологии	производств	(преддипломная)
в лесном комплексе	•	Подготовка к сдаче и сдача
		государственного экзамена
		Выполнение и защита выпуск-
		ной квалификационной работы

Указанные связи дисциплины дают обучающемуся системное представление о комплексе изучаемых дисциплин в соответствии с ФГОС ВО, что обеспечивает требуемый теоретический уровень и практическую направленность в системе обучения и будущей деятельности выпускника.

4. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины

Вид учебной работы	Всего академических часов

Контактная работа с преподавателем*:	84
лекции (Л)	30
практические занятия (ПЗ)	30
лабораторные работы (ЛР)	24
промежуточная аттестация (ПА)	-
Самостоятельная работа обучающихся	132
подготовка к текущему контролю	60
подготовка к промежуточному контролю (экзамену)	36
Курсовая работа	36
Вид промежуточной аттестации:	Экзамен
Общая трудоемкость	6/216

^{*}Контактная работа обучающихся с преподавателем, в том числе с применением дистанционных образовательных технологий, включает занятия лекционного типа, и (или) занятия семинарского типа, лабораторные занятия, и (или) групповые консультации, и (или) индивидуальную работу обучающегося с преподавателем, а также аттестационные испытания промежуточной аттестации. Контактная работа может включать иные виды учебной деятельности, предусматривающие групповую и индивидуальную работу обучающихся с преподавателем. Часы контактной работы определяются Положением об организации и проведении контактной работы при реализации образовательных программ высшего образования, утвержденным Ученым советом УГЛТУ от 25 февраля 2020 года.

5. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов

5.1. Трудоемкость разделов дисциплины

№ <i>u/u</i>	Наименование раздела дисциплины	Л	П3	ЛР	Всего кон- тактной ра- боты	Самостоятельная работа
1	Основные понятия и определения теории надежности	2	-	-	2	4
2	Общая картина и законо- мерности потери машиной работоспособности	2	2	2	6	10
3	Физика отказов	4	4	2	10	10
4	Расчет надежности элемен- гов и систем	12	14	4	30	20
5	Управление качеством и надежностью машин на стадиях проектирования, изготовления и эксплуатации.	4	4	8	16	20
6	Основные положения надежности оборудования и гехнологических линий ЦБП	2	2	2	6	16

7	Испытания машин и обору- дования на надежность	2	2	2	6	8
8	Нагрузочно-имитирующие устройства и стенды	2	2	4	8	8
Итог	го по разделам:	30	30	24	84	96
Промежуточная аттестация		-	-	-	-	36
Итого:						216

5.2. Содержание занятий лекционного типа

Тема 1. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ ТЕОРИИ НАДЕЖНОСТИ

Надежность как показатель технического уровня машин и оборудования лесного комплекса. Предмет науки о надежности, теоретическая база надежности, экономический аспект надежности. Задачи обеспечения и повышения надежности машин и оборудования лесного комплекса. Надежность как показатель технического уровня оборудования целлюлозно-бумажных производств.

Обобщенные объекты исследования надежности: изделие, элемент, система. Характеристики групп элементов и структур систем. Понятия работоспособности, исправности, отказа, надежности. Показатели надежности: безотказность, долговечность, ремонтопригодность, сохраняемость. Общая характеристика показателей надежности. Комплексные показатели надежности. Общая характеристика, основные соотношения. Особенности машин и оборудования целлюлозно-бумажных производств с точки зрения надежности.

Тема 2. ОБЩАЯ КАРТИНА И ЗАКОНОМЕРНОСТИ ПОТЕРИ МАШИНОЙ РАБОТОСПОСОБНОСТИ

Причины потери машиной работоспособности. Схема взаимосвязи факторов в процессе функционирования машины. Процессы, приводящие к потери машиной работоспособности, классификация процессов по скорости их протекания. Классификация процессов, действующих на бумагоделательное оборудование. Процессы, приводящие к потери машинной работоспособности. Взаимовлияние динамических и износовых процессов в узлах трения машин. Показатели технического состояния машин и оборудования ЦБП и их трансформация в процессе эксплуатации. Взаимовлияние динамики нагружения и процессов изнашивания в узлах трения машин. Показатели технического состояния машин и оборудования лесного комплекса и их трансформация в процессе эксплуатации.

Тема 3. ФИЗИКА ОТКАЗОВ

Основные виды отказов; хрупкое разрушение, пластические деформации, общая или местная потеря устойчивости, появление и развитие усталостных трещин, износ деталей в узлах трения, потеря плотности соединений, старение материалов и др. Классификация и характеристика процессов.

Механизмы появления пластических деформаций и разрушения. Статистические характеристики прочностных свойств материалов. Роль температуры эксплуатации, ударная вязкость, категория сталей.

Основные закономерности потери устойчивости элементов конструкций. Потеря устойчивости при пластических деформациях. Нормы гибкости элементов конструкций.

Механизм усталостного разрушения и стадии развития трещин. Вероятностные характеристики усталостных свойств материалов. Понятие о трещиностойкости и живучести.

Трение и изнашивание деталей и рабочих органов машин. Виды трения. Классификация и характеристики процессов изнашивания, теории изнашивания. Факторы, определяющие интенсивность изнашивания. Основные закономерности процесса изнашивания. Методы измерения износа. Методы исследования процессов изнашивания. Физическое

моделирование процессов трения и изнашивания. Коррозия; факторы, определяющие интенсивность процесса.

Тема 4. РАСЧЕТ НАДЕЖНОСТИ ЭЛЕМЕНТОВ И СИСТЕМ

Надежность элементов. Отказы элементов. Модели формирования отказов. Классификация отказов.

Законы распределения наработок (ресурсов). Расчет параметров теоретических законов распределения ресурса, проверка адекватности. Показатели надежности элементов. Методика выбора и расчета показателей надежности элементов.

Надежность систем. Машины и оборудование лесного комплекса, как сложные системы. Сложная система и ее характеристики, свойства сложных систем. Основные типы структур. Показатели надежности сложных систем, методика выбора и расчета. Расчет схемной надежности сложной системы с последовательным, параллельным и параллельно-последовательным соединением элементов. Сущность и виды резервирования. Методы построения и расчета структурных схем с применением ЭВМ.

Модели параметрической надежности, безотказности и технического состояния машин и оборудования лесного комплекса. Основные положения, математическое описание, методика расчета.

Тема 5. УПРАВЛЕНИЕ КАЧЕСТВОМ И НАДЕЖНОСТЬЮ МАШИН НА СТА-ДИЯХ ПРОЕКТИРОВАНИЯ, ИЗГОТОВЛЕНИЯ И ЭКСПЛУАТАЦИИ

Система управления и надзора за качеством и надежностью. Сертификация машин и оборудования лесного комплекса. Управление качеством и надежностью машин на предприятии, организация контроля. Комплексная программа обеспечения надежности. Обеспечение надежности при проектировании машин.

Расчет надежности по критерию статической прочности. Законы распределения и вероятностные характеристики нагрузок. Определение вероятностей появления пластических деформаций и разрушения.

Надежность машин по критерию устойчивости деформируемых элементов конструкций. Роль геометрических несовершенств и технологических факторов в обеспечении устойчивости конструкций. Конструктивные способы повышения жесткости.

Расчет надежности по критерию усталостной прочности. Схематизация процессов циклического нагружения элементов конструкций. Регулярное и нерегулярное нагружения. Построение диаграмм нагружения по методам полных циклов, максимумов, экстремумов, размахов. Типовые диаграммы нагружения элементов конструкций машин лесной и деревообрабатывающей промышленности. Прогнозирование усталостного ресурса на основе гипотезы линейного суммирования повреждений. Роль фактора чередования ступеней циклов нагружения. Расчет показателей трещиностойкости и живучести конструкций. Определение критических размеров трещин и числа циклов до разрушения. Прогнозирование вероятности усталостных отказов во времени. Конструктивные и технологические способы обеспечения усталостной прочности, их взаимосвязь с условиями эксплуатации.

Расчеты надежности по критерию изнашивания узлов трения машин и механизмов. Методики расчета трансформации показателей технического состояния машин и оборудования во времени. Прогнозирование показателей надежности. Нормирование надежности. Конструктивные мероприятия по повышению износостойкости узлов трения машин: применение износостойких материалов и упрочняющей технологии, уменьшение уровня нагрузочного фактора, компенсация износа и др.

Оптимальное проектирование конструкций машин с использованием критериев надежности. Основные задачи многокритериальной оптимизации элементов конструкций.

Обеспечение надежности при изготовлении и ремонте машин. Связь параметров технологического процесса изготовления машин с показателями их надежности. Отказы,

связанные с технологией изготовления. Влияние параметров технологического процесса на износостойкость поверхностей, усталостную прочность деталей, коррозионную стойкость изделий Технологическая наследственность. Надежность технологического процесса, запас надежности технологического процесса. Контроль качества и надежности машин в процессе их изготовления и ремонта. Виды и организационные формы технического контроля. Дефектоскопия.

Обеспечение надежности при эксплуатации машин. Периоды эксплуатации машин. Техническое состояние машин, причины его изменения в процессе эксплуатации. Влияние условий, режимов и интенсивности эксплуатации на показатели надежности машин и оборудования. Роль технических обслуживании и ремонтов в поддержании работоспособности машин и оборудования. Оптимизация периодичности и объемов работ по техническому обслуживанию и ремонту машин, оптимизация ремонтных комплектов. Критерии оптимальности. Целевые функции оптимизации. Диагностика машин, задачи технической диагностики, диагностические признаки.

Тема 6. ОСНОВНЫЕ ПОЛОЖЕНИЯ НАДЕЖНОСТИ ОБОРУДОВАНИЯ И ТЕХНОЛОГИЧЕСКИХ ЛИНИЙ ЦБП

Вероятность безотказной и безопасной работы оборудования и технологических линий ЦБП. Готовность оборудования и технологической линии. Показатели надежности оборудования и технологической линии в случае постоянных интенсивных отказов узлов и оборудования, составляющих технологическую линию. Построение показателей надежности оборудования и технологических линий ЦБП. Сбор и систематизация статистических данных по оборудованию и технологическим линиям. Обработка данных на ЭВМ.

Способы резервирования оборудования ЦБП. Постоянно включенный резерв. Резервирование замещением. Характеристики надежности оборудования и технологических линий с резервом при непоказательных законах распределения времени возникновения отказов. Технико-экономическая целесообразность резервирования.

Государственная система управления и надзор за качеством и надежностью. Аттестация качества и надежности.

Структурная схема надежности бумагоделательной машины. Порядок ее построения. Управление надежностью бумагоделательной машины.

Комплексный метод решения задач надежности оборудования ЦБП. Требования к надежности оборудования ЦЬП при разработке технического задания, технического предложения, технического проекта, рабочего проекта и при монтаже, наладке и эксплуатации.

Тема 7. ИСПЫТАНИЯ МАШИН И ОБОРУДОВАНИЯ НА НАДЕЖНОСТЬ

Категории, виды и уровни испытаний на надежность. Цели и задачи испытаний. Показатели надежности, определяемые в основных видах испытаний. Объекты испытаний и их выбор. Объем испытаний. Показатели технического состояния машин и оборудования, контролируемые в процессе испытаний. Измеряемые параметры, методы измерений, приборное обеспечение испытаний.

Эксплуатационные испытания. Организация эксплуатационных испытаний, методика сбора, накопления и обработки эксплуатационной информации. Стендовые испытания. Виды стендовых испытаний, этапы испытаний. Методика разработки обобщенного эксплуатационного и форсированного режима испытаний. Пределы форсирования нагрузочного фактора. Методы и программы сокращения продолжительности испытаний.

Тема 8. НАГРУЗОЧНО-ИМИТИРУЮЩИЕ УСТРОЙСТВА И СТЕНДЫ

Источники внешних возмущений и реакции в узлах машины на эти воздействия. Методы физического моделирования рабочих процессов. Классификация нагрузочно-имитирующих устройств, области применения.

Требования к нагрузочным устройствам. Примеры устройств. Стенды для испытаний на надежность деталей, узлов, механизмов и машин лесного комплекса. Схемы стендов, конструктивное устройство, области применения. Перечень параметров технического

5.3. **Темы и формы занятий семинарского типа** Учебным планом по дисциплине предусмотрены практические и лабораторные занятия.

No	Наименование раздела дисциплины (модуля)	Форма проведения занятия	Трудоемкость, час.
1	Основные понятия и определения теории надежности	Расчетная работа	-
2	Общая картина и закономерности потери машиной работоспособно-	Расчетная работа	2
3	Физика отказов	Расчетная работа	4
4	Расчет надежности элементов и систем	Расчетная работа	14
5	Управление качеством и надежностью машин на стадиях проектирования, изготовления и эксплуатации.	Расчетная работа	4
6	Основные положения надежности оборудования и технологических линий ЦБП	Расчетная работа	2
7	Испытания машин и оборудования на надежность	Расчетная работа	2
8	Нагрузочно-имитирующие устрой- ства и стенлы	Расчетная работа	2
1	Расчет надежности элементов и систем	Лабораторная работа	2
2	Общая картина и закономерности потери машиной работоспособности	Лабораторная работа	2
3	Управление качеством и надежностью машин на стадиях проектирования, изготовления и эксплуатации	Лабораторная работа	4
4	Расчет надежности элементов и систем	Лабораторная работа	2
5	Расчет надежности элементов и систем	Лабораторная работа	2
6	Расчет надежности элементов и систем	Лабораторная работа	2

7	Испытания машин и оборудова-	Лабораторная работа	2
	ния на надежность		
8	Испытания машин и оборудова-		2
	ния на надежность		
9	Испытания машин и оборудова-	Лабораторная работа	2
_	ния на надежность		
	Итого		54

5.4 Детализация самостоятельной работы

	Наименование раздела	Вид самостоятельной	Трудоемкость,
1	Основные понятия и определения геории надежности	Подготовка к текущему контролю	6
2	Общая картина и закономерности потери машиной работоспособ-	Подготовка к текущему контролю	6
3	Физика отказов	Подготовка к текущему контролю	8
4	Расчет надежности элементов и систем	Подготовка к текущему контролю	8
5	Управление качеством и надежностью машин на стадиях проектирования, изготовления и эксплуатации.	Подготовка к текущему контролю	8
6	Основные положения надежности оборудования и технологических линий ЦБП	Подготовка к текущему контролю	8
7	Испытания машин и оборудования на надежность	Подготовка к текущему контролю	8
8	Нагрузочно-имитирующие устройства и стенды	Подготовка к текущему контролю	8
	Курсовая работа	Выполнение курсовой работы	36
	Промежуточная аттестация (экзамен)	Подготовка к промежу- точной аттестации	36
Ито	го:		132

5. Перечень учебно-методического обеспечения по дисциплине Основная и дополнительная литература

№	Автор, наименование	Год изда- ния	Приме- чание
	Основная литература		
1	Основы надежности машин: учебное пособие / П. А. Лебедев, А.	2019	Полнотек-
	В. Захарин, А. Т. Лебедев [и др.]. — Ставрополь : СтГАУ, 2019.		
— 120 с. — Текст : электронный // Лань : электронно-		ступ при	
	библиотечная система. — URL:		входе по

	·		
	https://e.lanbook.com/book/169730. — Режим доступа: для авто-		логину и
	риз. пользователей.		паролю*
2	Управление качеством и надежностью машин : учебное пособие	2018	Полнотек-
	/ Ю. И. Жевора, А. Т. Лебедев, А. В. Захарин [и др.]. — 2-е изд.,		стовой до-
	перераб. и доп. — Ставрополь : СтГАУ, 2018. — 180 с. —		ступ при
	Текст: электронный // Лань: электронно-библиотечная система.		входе по
	— URL: https://e.lanbook.com/book/141637. — Режим доступа:		логину и
	для авториз. пользователей.		паролю*
3	Торопынин, С. И. Надежность и ремонт машин: учебное посо-	2018	Полнотек-
	бие / С. И. Торопынин, С. А. Терских. — Красноярск : КрасГАУ,		стовой до-
	2018. — 102 с. — Текст: электронный // Лань: электронно-		ступ при
	библиотечная система. — URL:		входе по
	https://e.lanbook.com/book/130129. — Режим доступа: для авто-		логину и
	риз. пользователей.		паролю*
	Дополнительная литература		
5	Черкасов, В. А. Надежность машин и механизмов: учебник / В.	2015	Полнотек-
	А. Черкасов; под редакцией Б. А. Кайтукова, В. И. Скеля. —		стовой до-
	Москва : МИСИ – МГСУ, 2015. — 272 с. — ISBN 978-5-7264-		ступ при
	1184-2. — Текст: электронный // Лань: электронно-		входе по
	библиотечная система. — URL: https://e.lanbook.com/book/73702		логину и
	— Режим доступа: для авториз. пользователей.		паролю*
6	Брауде В.И, Семенов Л.Н. Надежность подъемно-транспортных	1986	
	машин. Л: Машиностроение, 1986. 183 с.		
			_

Функционирование электронной информационно-образовательной среды обеспечивается соответствующими средствами информационно-коммуникационных технологий.

Электронные библиотечные системы

Каждый обучающийся обеспечен доступом к электронной библиотечной системе УГЛТУ (http://lib.usfeu.ru/), ЭБС Издательства Лань http://e.lanbook.com/, ЭБС Университетская библиотека онлайн http://biblioclub.ru/, содержащих издания по основным изучаемым дисциплинам и сформированных по согласованию с правообладателями учебной и учебно-методической литературы.

Справочные и информационные системы

- 1. Справочная Правовая Система КонсультантПлюс.
- 2. Информационно-правовой портал Гарант. Режим доступа: http://www.garant.ru/
- 3. База данных Scopus компании Elsevier B.V. https://www.scopus.com/
- 4. «Антиплагиат ВУЗ».

Профессиональные базы данных

- 1. Научная электронная библиотека elibrary. Режим доступа: http://elibrary.ru/.
- 2. Единое окно доступа к образовательным ресурсам Федеральный портал (http://window.edu.ru/)
- 3. Библиотека Машиностроителя (https://lib-bkm.ru/)
- 4. Электронная Интернет библиотека для «технически умных» людей «ТехЛит.ру». Ре жим доступа: http://www.tehlit.ru/.
- 4. База данных «Открытая база ГОСТов» (https://standartgost.ru/)
- 5. Интернет-сайт Федерального агентства по техническому регулированию. Режим досту

па: http://www.gost.ru/.

6. Интернет-сайт Издательского центра «Академия». Режим доступа: http://www.academia-moscow.ru/.

Нормативно-правовые акты

- 1. Гражданский кодекс Российской Федерации от 30.11.1994 года N51 -Ф3.
- 2. Федеральный закон «О защите прав потребителей» от 07.02.1992 N 2300-1 (ред. от 08.12.2020).
- 3. Федеральный закон «Об обеспечении единства измерений» от 26.06.2008 N 102-Ф3.
- 4. Федеральный закон «Об информации, информационных технологиях и о защите ин формации» от 27.07.2006 N 149-Ф3.

7. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Формируемые компетенции	Вид и форма контроля
ОПК-4 - способен реализовывать современные	Промежуточный контроль: кон-
технологии и обосновывать их применение в про-	трольные вопросы к экзамену.
фессиональной деятельности;	Текущий контроль:
ОПК-5 - способен участвовать в проведении экс-	практические задания, задания в
периментальных исследований в профессиональной	тестовой форме, курсовая работа

7.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Критерии оценивания устного ответа на контрольные вопросы (промежуточный контроль формирования компетенций ОПК-4):

ответ изложен литературным языком в терминах науки, показана способность быстро реагировать на уточняющие вопросы;

хорошо - дан полный, развернутый ответ на поставленный вопрос, показано умение выделить существенные и несущественные признаки, причинно-следственные связи. Ответ четко структурирован, логичен, изложен в терминах науки. Однако допущены незначительные ошибки или недочеты, исправленные обучающимся с помощью «наводящих» вопросов;

удовлетворительно - дан неполный ответ, логика и последовательность изложения имеют существенные нарушения. Допущены грубые ошибки при определении сущности раскрываемых понятий, теорий, явлений, вследствие непонимания обучающимся их существенных и несущественных признаков и связей. В ответе отсутствуют выводы. Умение раскрыть конкретные проявления обобщенных знаний не показано. Речевое оформление требует поправок, коррекции;

неудовлетворительно - обучающийся демонстрирует незнание теоретических основ предмета, не умеет делать аргументированные выводы и приводить примеры, показывает слабое владение монологической речью, не владеет терминологией, проявляет отсутствие логичности и последовательности изложения, делает ошибки, которые не может исправить, даже при коррекции преподавателем.

Критерии оценивания выполнения заданий в тестовой форме (текущий контроль формирования компетенций ОПК-4)

По итогам выполнения тестовых заданий оценка производится по четырех балльной шкале. При правильных ответах на:

86-100% заданий - оценка «отлично»;

71-85% заданий - оценка «хорошо»;

51-70% заданий - оценка «удовлетворительно»;

менее 51% - оценка «неудовлетворительно».

Критерии оценивания практических заданий (текущий контроль формирования компетенций ОПК-4):

отпично: выполнены все задания, обучающийся четко и без ошибок ответил на все контрольные вопросы.

хорошо: выполнены все задания, обучающийся с небольшими ошибками ответил на все контрольные вопросы.

удовлетворительно: выполнены все задания с замечаниями, обучающийся ответил на все контрольные вопросы с замечаниями.

неудовлетворительно: обучающийся не выполнил или выполнил неправильно задания, ответил на контрольные вопросы с ошибками или не ответил на конкретные вопросы.

7.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Основные вопросы

- 1. Понятия сложной системы и элемента системы как объектов исследования надежности. Примеры систем и элементов машин, оборудования и аппаратов лесного комплекса (30 баллов).
- 2. Определение надежности. Свойства надежности. Понятия безотказности, долговечности, ремонтопригодности и сохраняемости. (42 балла).
- 3. Показатели безотказности. Формулы для расчета вероятности безотказной работы для экспоненциального и нормального законов распределения ресурса элементов (50 баллов).
- 4. Показатели долговечности и ремонтопригодности. Понятия ресурса и срока службы. Формулы для расчета показателей долговечности и ремонтопригодности (50 баллов).
- 5. Комплексные показатели надежности. Формулы для расчета комплексных показателей надежности (46 баллов).
- 6. Особенности машин, оборудования и аппаратов лесного комплекса с точки зрения надежности (26 баллов).
- 7. Факторы и процессы приводящие к потери машиной работоспособности, классификация процессов по скорости их протекания. (46 баллов)
- 8. Сущность взаимовлияния динамических процессов и процессов изнашивания в узлах трения машин. График износа в условиях взаимовлияния. (30 баллов)
- 9. Классификация и основные виды разрушения деталей машин (30 баллов).
- 10. Классификация видов трения в узлах машин. Сущность молекулярно-механической теории трения (46 балла).
- 11. Классификация видов изнашивания узлов трения машин. Типичный график износа в функции наработки (46 баллов).
- 12. Виды механического изнашивания деталей машин. Общая характеристика процессов. (42 балла).
- 13. Коррозия, классификация и общая характеристика видов коррозии (30 баллов).
- 14. Классификация отказов машин, функциональных узлов, агрегатов и деталей (42 балла)

- 15. Модели (схемы) формирования внезапного и постепенного отказов (30 баллов)
- 16. Законы распределения ресурса элементов. Основные зависимости (46 баллов).
- 17. Понятие сложной системы. Основные типы структур. Примеры расчета вероятности безотказной работы системы с последовательным, параллельным и параллельно-последовательном соединении элементов (50 баллов).
- 18. Модель параметрической надежности машин и оборудования. Общая характеристика параметров модели. Графическое представление. (50 баллов).
- 19. Конструктивные мероприятия по повышению износостойкости узлов трения машин
- 20. Факторы, определяющие скорость процесса изнашивания. Формула расчета скорости изнашивания при трении скольжения. (42 балла)
- 21. Методы получения информации о надежности машин. Общая характеристика (30 баллов)
- 22. Цели и задачи испытаний на надежность (30 баллов)
- 23. Эксплуатационные испытания, методы проведения эксплуатационных испытаний (30 баллов).
- 24. Стендовые испытания на надежность. Стендовые ускоренные испытания. Методы и программы сокращения продолжительности испытаний. (50 баллов).
- 25. Классификация нагрузочно-имитирующих устройств, примеры схемы устройств (46 баллов).

Дополнительные вопросы (4 балла)

- 1. Какие основные законы распределения случайных величин Вы знаете?
- 2. Что такое усталость материала детали?
- 3. Что такое отказ?
- 4. Приведите примеры параметрического отказа машины.
- 5. В каких единицах измеряется ресурс подшипника и срок службы резиновой манжеты?
- 6. Какие факторы оказывают наибольшее влияние на интенсивность абразивного изнашивания узлов при трении скольжения?
- 7. Перечислите показатели технического состояния машин, контролируемые в процессе их испытаний на надежность.
- 8. Что такое вероятность безотказной работы?
- 9. Чем отличается химическая коррозия от электрохимической?
- 10. Какие комплексные показатели надежности Вы знаете?

Тестовые задания по курсу

- 1. Свойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени называют:
 - 1) долговечностью

4) работоспособностью

2) сохраняемостью

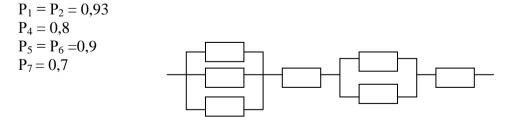
5) безотказностью

- 3) ремонтопригодностью
- 2. Вероятность того, что в пределах заданной наработки не возникает отказ объекта, называют:
 - 1) интенсивностью отказов
 - 2) параметром потока отказов
 - 3) средней наработкой до отказа
 - 4) средней наработкой на отказ
 - 5) вероятностью безотказной работы
- 3. Календарная продолжительность эксплуатации объекта от ее начала или возобновле-

6.Свойство объекта сохранять работоспособность до наступления предельного состояния называют.....

7. Свойство объекта, заключающееся в его приспособленности к поддержанию и восстановлению работоспособного состояния путем проведения ТО и ремонтов, называется......

8.Определить вероятность безотказной работы шарикоподшипника №216, нагруженного случайной силой, коэффициент вариации которой 0,2. Частота вращения внутреннего кольца 100мин⁻¹. Требуемый ресурс подшипника 5000ч. среднее значение эквивалентной нагрузки 10~000Н. Для шарикоподшипника №216 C_{90} = 78~000Н.


- 1) P=0,9999 2) P=0,8789 3) P=0,7891 4)P=0.5555 5)P=0.452
- 9. Событие, заключающееся в нарушении работоспособности объекта, называется

10.Свойство объекта сохранять исправное и работоспособное состояние во время и после хранения и транспортирования называется.....

11. Рассчитать вероятность разрушения балки, которая закреплена консольно, и работает на изгиб под случайной нормальнораспределёной нагрузкой, которая может принимать значения от 800H до 1200H. Сечение балки 12*12мм, плечо приложения нагрузки 10мм. Допускаемое напряжение на изгиб является также случайной нормальнораспределёной величиной и может принимать значения от 600 кгс/см² до1200 кгс/см².

1) Q=0 2)Q=0.5 3)Q=0.75 4) Q=1 5) Q=0.22

12.Определить вероятность отказа третьего элемента в технологической цепочке, чтобы вероятность безотказной работы всей цепочки была бы не менее 0,6

- 1)Q₃=0,1500 2) Q₃=0,5269 3) Q₃=0,7892 4) Q₃=0,9856 5) Q₃=0,0074
- 13. Рассчитать вероятность отказа шпонки по критерию среза, если:

- 1) площадь среза 30*100мм
- 2) нагрузка на шпонку 500 кН
- 3) допускаемое напряжение на срез для материала шпонки изменяется от $1,2*10^8\Pi a$ до $2,2*10^8\Pi a$.
- 4) Напряжение подчиняется нормальному закону распределения.

1)Q=0,53

2) $Q_3 = 0.5269$

3) $Q_3=0.7892$

4) $Q_3 = 0.9856$

5) $Q_3=0,0074$

14. Две стальные детали стянуты болтам M12-6g (p=1,75мм, d_p = 10,35мм). Соединение нагружено растягивающей силой, изменяющейся от O до F. Среднее значение силы F = $9*10^3$ H, коэффициент вариаций силы V_F = 0,1. Оценить вероятность безотказной работы по основным критериям: нераскрытия стыка, несдвигаемости стыка, статической прочностью и сопротивления усталости болта. Контроль затяжки осуществляется динамометрическим ключом.

$$\begin{split} &\chi=0.2;\ \delta_t=360 M\Pi a;\ \delta_{-1}=220 M\Pi a;\ V_{\delta t}=&0.06;\\ &\delta_{_{3aT}}=&0.5\delta_t=&180 M\Pi a;\ \beta_c=&1.1;\ R_\delta=3.0;\ E_\delta=1.0;\\ &\beta=1.0;\ \beta_{_{y\Pi}}=1.0;\ \phi=&0.1;\ V_{_{3aT}}=&0.09;\ V_1=0.07;\\ &V_2=0.1;\ V_3=0.023;\ f=&0.8;\ V_f=&0.1 \end{split}$$

1) P>0,8846

1) P>0,1256

2) P>0,4523

4) P>0,9846

5) P>0,0046

15.Определить требуемую вероятность безотказной работы трака гусеничной цепи трактора, если вероятность безотказной работы трактора по гусенице в целом должна быть не менее 0,90. Число траков в гусенице 40.

1) P>0.8846

1) P>0.1256

2) P>0,4523

4) P>0,9846

5) P>0,004

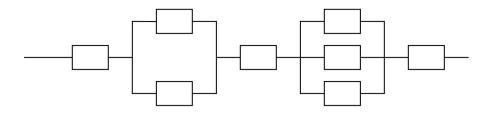
16.Выбрать технологическую цепочку, вероятность безотказной работы которой максимальная. Технологические цепочки состоят из п последовательно соединенных элементов.

I вариант

Вероятность безотказной работы первого элемента равна $P_1 = 0.92$, вероятность отказов второго элемента $Q_2 = 0.08$, $Q_3 = 0.06$; $P_4 = 0.9$; $P_5 = 0.84$.

II вариант

$$P_1 = 0.86$$
; $Q_2 = 0.06$; $Q_3 = 0.01$; $P_4 = 0.8$; $Q_5 = 0.07$.


III вариант

$$Q_1 = Q_2 = Q_3 = Q_4 = Q_5 = Q_6 = 0.05$$

- 1) І вариант
- 2)_{_}II вариант
- 3) III вариант

17.Определить вероятность отказа машины, если структурные схемы соединения ее узлов имеют следующий вид

17

$$И$$
 $P_1 = 0.9$; $Q_2 = 0.05$; $Q_3 = 0.2$; $P_4 = 0.8$; $Q_4 = 0.15$; $Q_5 = Q_6 = Q_8 = 0.05$; $Q_7 = 0.2$

1) P=0,65

2) P=0,12

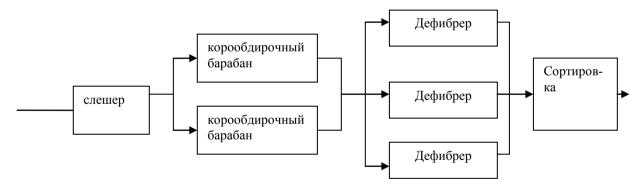
2) P=0,41

4) P=0.98

5) P=0,03

18.Определить вероятность безотказной работы роликоподшипника № 2207, нагруженного случайной силой, коэффициент вариации которой равен 0,12. Частота вращения внутреннего кольца подшипника 300 об/мин, требуемый ресурс подшипника 3500 ч. Среднее значение эквивалентной нагрузки 4500н. $C_{90} = 25600H$ — для подшипника № 2207

1) P=0,55


2) P=0,99

2) P=0.47

4) P=0.93

5) P=0,03

19.Оценить вероятность безотказной работы линии основного оборудования для подготовки бумажной массы, если технологическая схема

Если наработка отказов слешера — 120 часов; корообдирочного барабана — 80 часов; дефибрера — 50 часов; сортировки — 100 часов.

Период времени эксплуатации t = 8 часов.

1) P=0.75

2) P=0,99

2) P=0,67

4) P=0.97

5) P=0,93

20.Соединение с натягом d=48 мм соответствует посадке H8/x8. Соединение нагружено моментом T, среднее значение которого 1050Hм и коэффициентом вариации 0, 12. Определить вероятность безотказной работы этого соединения, если диаметр ступицы 85мм, длина посадочной поверхности 60мм, высота микронеровностей $R_{z1}=40$ мкм, $R_{z2}=6$ мкм, $E=2,1\cdot 10^5$ Па, среднее значение коэффициента трения f=0,12, коэффициент вариации трения 0,1.Отклонение диаметра вала 97 мкм.

Допуски диаметров вала и отверстия 39 мкм, среднее значение натяга 97 мкм. $\sigma_{\scriptscriptstyle T} = 400$

2) P=0,45 5) P=0.13

21. Определить коэффициент готовности Кг машины, если средняя наработка на отказ То = 400 часов, а среднее время восстановления Тв = 4 часа.

4) P=0.50

1) $K_{\Gamma} = 0.63$ 2) $K_{\Gamma} = 0.93$ 4) $K_{\Gamma} = 0.98$

5) $K_{\Gamma} = 0.73$

22. Рассчитать вероятность безотказной работы P(t) системы из последовательно соединенных n=3 элементов при наработке t=300 часов. Средние ресурсы элементов: $Tp=1400,\,2000$ и 3000 часов. Закон распределения ресурса элементов - экспоненциальный.

1) P=0,88 2) P=0,45 5) P=0,63 2) P=0,99 4) P=0,50

23. Рассчитать вероятность безотказной работы системы P(t) из параллельно соединенных n=3 однотипных элементов при наработке t=500 часов. Средний ресурс элементов Tp=1000 часов. Закон распределения ресурса элементов - экспоненциальный.

1) P=0,48 2) P=0,65 2) P=0,65 2) P=0,57

5) P=0,90

24. Определить коэффициент технического использования машины, если ее наработка за некоторый период эксплуатации составила Траб = 2000 час, а общая продолжительность ремонтов за этот период эксплуатации Т рем =100 час.

1) 0,48 2) 0,65 2) 0,65 2) 0,65

5) 0,95

7.4. Соответствие шкалы оценок и уровней сформированных компетенций

Уровень сформированных компетенций	Оценка	Пояснения
Высокий	ОНРИПТО	Теоретическое содержание курса освоено полностью, все предусмотренные программой обучения учебные задания выполнены. Обучающийся демонстрирует свободное владение материалом, способность решать стандартные задачи. Способен самостоятельно приобретать новые знания, систематизировать и структурировать изученный материал, используя современные информационные технологии.

Базовый	хорошо	Теоретическое содержание курса освоено полностью, все предусмотренные программой обучения учебные задания выполнены с незначительными замечаниями. Обучающийся способен решать стандартные задачи профессиональной деятельности, применяя фундаментальные знания с применением информационно-коммуникационных технологий. Способен самостоятельно приобретать новые знания, под руководством систематизировать и структурировать изученный материал, используя при этом современные информационные технологии.
Пороговый	удовлетво- рительно	Теоретическое содержание курса освоено частично, большинство предусмотренных программой обучения учебных заданий выполнено, в них имеются ошибки. Обучающийся способен под руководством решать стандартные задачи профессиональной деятельности, применяя фундаментальные знания, в том числе с применением информационнокоммуникационных технологий. Способен приобретать новые знания, под руководством систематизировать и структурировать изученный материал, используя при этом современные информационные технологии.
Низкий	неудовле- творительно	Теоретическое содержание курса не освоено, большинство предусмотренных программой обучения учебных заданий либо не выполнены, либо содержат грубые ошибки; дополнительная самостоятельная работа над материалом не привела к какому-либо значительному повышению качества выполнения учебных заданий. Не демонстрирует способность самостоятельного приобретения новых знаний с использованием современных информационных технологий.

8. Методические указания для самостоятельной работы обучающихся

Самостоятельная работа - планируемая учебная, учебно-исследовательская работа студентов, выполняемая во внеаудиторное (аудиторное) время по заданию и при методическом руководстве преподавателя, но без его непосредственного участия (при частичном непосредственном участии преподавателя, оставляющем ведущую роль в контроле за работой студентов). Самостоятельная работа студентов в вузе является важным видом их учебной и научной деятельности.

Основными видами самостоятельной работы обучающихся по дисциплине являются:

- подготовка к текущему контролю (практические задания);
- подготовка к текущему контролю (задания в тестовой форме);
- подготовка к промежуточной аттестации.

Выполнение практического задания представляет собой вид самостоятельный работы, направленный на закрепление обучающимися изученного теоретического материала на практике.

Задания в тестовой форме сформированы по всем разделам дисциплины.

Данные тесты могут использоваться:

- обучающимися при подготовке к зачету в форме самопроверки знаний;
- преподавателями для проверки знаний в качестве формы текущего контроля на практических занятиях;
 - для проверки остаточных знаний обучающихся, изучивших данный курс.

Задания в тестовой форме рассчитаны на самостоятельную работу без использова-

ния вспомогательных материалов, то есть при их выполнении не следует пользоваться учебной и другими видами литературы. Прочитав задание, следует выбрать правильный ответ.

На выполнение теста отводится ограниченное время. Оно может варьироваться в зависимости от уровня тестируемых, сложности и объема теста. Как правило, время выполнения тестового задания определяется из расчета 45-60 секунд на один вопрос.

Содержание тестов по дисциплине ориентировано на подготовку обучающихся по основным вопросам курса. Уровень выполнения теста позволяет преподавателям судить о ходе самостоятельной работы обучающихся в межсессионный период и о степени их подготовки к зачету.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Для успешного овладения дисциплиной используются следующие информационные технологии обучения:

- При проведении лекций используются презентации в программе MS Office (PowerPoint), осуществляется выход на профессиональные сайты, используются видеоматериалы различных интернет-ресурсов, платформа LMS Moodle.
- Практические занятия по дисциплине проводятся с использованием демонстрационных образцов, графиков, таблиц и нормативно-технической документации.

В процессе изучения дисциплины учебными целями являются первичное восприятие учебной информации, ее усвоение, запоминание, а также структурирование полученных знаний и развитие интеллектуальных умений, ориентированных на способы деятельности репродуктивного характера. Посредством использования этих интеллектуальных умений достигаются узнавание ранее усвоенного материала в новых ситуациях, применение абстрактного знания в конкретных ситуациях.

Для достижения этих целей используются в основном традиционные информативно-развивающие технологии обучения с учетом различного сочетания пассивных форм (лекция, консультация, самостоятельная работа) и репродуктивных методов обучения (повествовательное изложение учебной информации, объяснительно-иллюстративное изложение) и практических методов обучения (выполнение практических работ).

Университет обеспечен необходимым комплектом лицензионного программного обеспечения:

- семейство коммерческих операционных систем семейства Microsoft Windows;
- офисный пакет приложений Microsoft Office;
- программная система для обнаружения текстовых заимствований в учебных и научных работах «Антиплагиат.ВУЗ»;

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Реализация учебного процесса осуществляется в специальных учебных аудиториях университета для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Все аудитории укомплектованы специализированной мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории. При необходимости обучающимся предлагаются наборы демонстрационного оборудования и учебно-наглядных пособий, обеспечивающие тематические иллюстрации.

Самостоятельная работа обучающихся выполняется в специализированной аудитории, которая оборудована учебной мебелью, компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационнообразовательную среду УГЛТУ.

Самостоятельная работа обучающихся выполняется в специализированной аудитории, которая оборудована учебной мебелью, компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационнообразовательную среду УГЛТУ.

Есть помещение для хранения и профилактического обслуживания учебного оборудования.

Требования к аудиториям

Наименование специальных помещений и помещений для самостоятельной работы	Оснащенность специальных помещений и помещений для самостоятельной работы
Помещение для лекционных, занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации.	Переносная мультимедийная установка (проектор, экран, ноутбук), комплект электронных учебнонаглядных материалов (презентаций) на флеш-носителях, обеспечивающих тематические иллюстрации, демонстрационные модели. Учебная мебель.
Помещения для самостоятельной работы	Столы компьютерные, стулья, персональные компьютеры. Выход в сеть «Интернет».
Помещение для хранения и профилактического обслуживания учебного оборудования	Стеллажи, раздаточный материал.